
SEH Based Exploitation

By Umair Manzoor (UmZ).

About Me

� Software Engineer at NADRA.

� Involved in Network & Information security

since childhood.

� Published few exploits. (against Microsoft

too) & paper at NEbraskaCERT USA.

� Contact & List of publications.

umz32.dll [at] gmail.com

http://www.milw0rm.com/author/701

Agenda

� Brief overview of buffer overflow in
applications.

� SEH basics.

� SEH based exploitation.

What is BOF????!

� An error caused when a program tries to store too
much data in a temporary storage area. This can be
exploit by hackers to execute malicious code.

-- smoothwall

� In computer security and programming, a buffer
overflow or buffer overrun is a programming error
which may result in a memory access exception
and program termination or in the event of user
being malicious, a breach of system security.

-- wikipedia

SEH Prerequisites

� Should have good understanding of
stack based exploitation.

� Use of debuggers like Olly.

� Assembly language.

� Concept of shellcodes.

What is SEH?

� Structured Exception Handling.

� What is an Exception?
� An unexpected situation caused within the

software.

� What if it was really unexpected by the

developer too??

� OS takes over the program and handles it by

itself.

Types of Exceptions

� Hardware
� Raised by the OS in response to processor or

virtual machine events (e.g. divide by zero or

invalid memory access).

� Software
� Raised by you or the Windows API or a

component you are using.

WHY SEH??

� Windows is a smart platform that prevents
owning the IP REG. while overflowing the
buffer specially in SP2.

� As a result even if you have placed a
shellcode successfully you won’t be able to
execute it.

WHY SEH (cont.)

� Any occurrence of access violation hands

over the charge to SEH.

� SEH then tries to clean up the exception

either by invoking some more exceptions in

chain or by terminating the program cleanly.

Anatomy of SEH……

� Disassembly of a program reveals that

� There are 3 important pointers.

� Pointer to next SEH.

� SE Handler.

� End of SEH Chain.

Anatomy (cont.)

� Pointer to next SEH record.
� The address to which the CPU transfers the control

when the current SE handler is unable to handle the
exception. (resulting in invocation of next SEH)

� SE Handler.
� The address of piece of code that handles or tries to

handle the exception.

� End of SEH chain.
� If the chain is unable to handle the exception it results

in an improper termination of the program.

Anatomy (cont.)

� Stack dump

� First the Pointer to
next SEH record is
placed on the stack.

� Then there is the
address of SE
handler.

� If exception is
handled correctly
then the control is
transferred back to
program.

� 0012FFA4 |FFFFFFFF

� 0012FFA8 |0012FF4C

� 0012FFAC |0012FFF0

� 0012FFB0 |0012FFE0 Pointer to next SEH record

� 0012FFB4 |0040A1C4 SE handler

� 0012FFB8 |0040E3F8 PMSystem.0040E3F8

� 0012FFBC |00000000

� 0012FFC0 \0012FFF0

Anatomy (cont.)

� Stack dump

� Here 0xFFFFFFFF
represents the End
of SEH.

� 0012FFC4 7C816D4F RETURN to
kernel32.7C816D4F

� 0012FFC8 7C910738 ntdll.7C910738

� 0012FFCC FFFFFFFF

� 0012FFD0 7FFD6000

� 0012FFD4 8054B038

� 0012FFD8 0012FFC8

� 0012FFDC 821A17C0

� 0012FFE0 FFFFFFFF End of SEH chain

� 0012FFE4 7C8399F3 SE handler

� 0012FFE8 7C816D58 kernel32.7C816D58

Anatomy of SEH

Pointer to next SEH record

SE handler

Pointer to next SEH record

SE handler

End of SEH chainAccess violation occurred

Exception Handling Routine Exception Handling Routine

Taking over SEH!!!

� What advantage do we get by taking
over SEH??? anyone?

� You don’t have to worry about the access

violation exceptions when you have

owned the SEH.

� As a matter of fact we need the access

violation.

Why access violation???

� If any thing bad happens the SE
handler will execute.

� If we have already owned that SE
handler then we can jump to some
fake exception.

� Fake Exception (POP, POP, RET).

� Pointer to next SEH must point to
shellcode.

POP, POP, RET???

� What is POP, POP, RET?? Anyone??

� It’s a magic routine to fool the OS.

� OS understands that exception handling

routine has been executed and now

move to next SEH or End of SEH chain.

� Fake exception should be in some binary

dll / exe except the stack.

POP, POP, RET??? (cont.)

� Then where is pop pop ret???
� Windows has it for us in ntdll.dll

� NTDLL is “NT LAYER DLL” that contains
NT Kernel functions.

� We can dump the entire memory area
and search for magic routine.(use
memdump).

� Use msfpescan to find the pop pop ret
sequence.

POP, POP, RET??? (cont.)

� But…….

� Searching an unmapped memory area

will cause an access violation that might

kill the application.

Owned SEH!!!!

Pointer to next SEH record

SE handler

Shellcode

Here

POP, POP, RET

Access violation occurred

Fake

Exception

Using SEH for code execution

� Successfully exploitation depends
upon the well structured payload.

� Payloads are like…….

AAAAA….. Shellcode + NOPs RET ADDR

BUFFER + 4 Bytes + 4 Bytes

Payloads

� Many approaches for a payload.

� An easy approach for a good payload
is usage of NOPs.

� In such a way you can avoid absolute
addressing (return address).

eXample

� Nops are very usefull
here.

� CPU process NOPs as No
Operation command.

� Hence it jumps to the next
statement.

� This process continues
until it get a operational
statement.

� 010EFC14 90909090

� 010EFC18 90909090

� 010EFC1C 90909090

� 010EFC20 90909009

� 010EFC24 90909090

� 010EFC28 90909090

� 010EFC2C 0128FC90 Pointer to next SEH record

� 010EFC30 7C901010 SE handler

� 010EFC34 90909090

� 010EFC38 90909090

� 010EFC3C 90909090

� 010EFC40 90909090

� 010EFC44 90909090

� 010EFC48 90909090

� 010EFC4C 90909090

eXample (cont.)

� After NOPs the shellcode
starts.

� So we don’t need to
specify the exact address
of shellcode in pointer to
next SEH record.

� For example rather then
providing 0x010EFCA0,
you can provide 010EFC90-
9C

� Wooops!! We avoided the
absolute addressing.

� 010EFC90 90909090

� 010EFC94 90909090

� 010EFC98 90909090

� 010EFC9C 90909090

� 010EFCA0 E983C931

� 010EFCA4 D9EED9DB

� 010EFCA8 5BF42474

� 010EFCAC D8137381

� 010EFCB0 83E47222

� 010EFCB4 F4E2FCEB

� 010EFCB8 E434CA24

� 010EFCBC A1F922D8

� 010EFCC0 E10EA9E4

� 010EFCC4 6F9D23A0

� 010EFCC8 BBF93A97

Things to remember.

� Be careful while making payloads.

� Reduce the no. of NOPs if required to adjust

the size of shellcode.

� Your shellcode may require encoding

schemes such as Alpha2 etc.

If you spend more on coffee than on IT security, you will be

hacked. What's more, you deserve to be hacked.

— White House Cyber security Advisor, Richard Clarke

All Done.

� Thanks.

� -----------------X-----------X----------------

� Questions ?

